ESA hírek: Ariane-6, James Webb és BepiColombo

A napokban több ESA-projekt is mérföldkövet ért el, illetve a következő időszakban is fontos események lesznek a különböző európai űrprogramokban.

Ariane-6

A P120C szilárd hajtóanyagú segédrakétának sikeresen lezajlott az utolsó tesztje Kourouban október 7-én a Guyana Űrközpontban. A sikeres tesztnek köszönhetően hamarosan megkaphatja a repülési minősítést a rakétamotor, így egy lépéssel közelebb vagyunk az Ariane-6 repüléséhez. A P120C a P80 rakétamotort hivatott leváltani – a gyártása egyszerűbb, illetve a technológiai fejlődésnek köszönhetően hatékonyabb is. A tervezésnél figyelembe vették hogy nem csak a Vega-C rakéta első fokozata fogja ezt a motort használni, hanem az Ariane-6 segédrakétáiként is felhasználják majd – így univerzálisabb lett a gyártása, mellyel sokkal több pénzt tud a jövőben az ESA spórolni. Amikor ténylegesen repülésre kerül sor, a P120C lesz a világ legnagyobb és legerősebb egy szegmensből álló szilárd hajtóanyagú rakétamotorja (a Space Launch Systemen használt segédrakéták öt szegmensből állnak).

A QM2 (Qualification Motor 2) motor tesztje lefedte a teljes működési időt (130 másodperc) és 4500 kN maximális tolóerőt ért el. A P120C burkolatát Olaszországban, a hajtómű fúvókáját Franciaországban és a gyújtórendszert pedig Norvégiában gyártják. A szilárd hajtóanyagot helyben, Francia Guyanában készítik és töltik a rakétamotorba. Ez volt a harmadik és utolsó tesztgyújtása a P120C-nek, de az első, melyet az Ariane-6 konfigurációban teszteltek – sikerrel. A tesztállást ezért mechanikai szempontokból és a repülési szoftver miatt át kellett alakítani. Korai előrejelzések alapján nem volt semmi rendellenesség a teszt során, de egy teljes elemzés után fogják csak kijelenteni a tényleges minősítést a repülésre.

Ariane-6: a rakéta alján jól látható a négy darab P120C segédrakéta
Forrás: ESA

James Webb űrtávcső

Múlt hét elején a James Webb űrteleszkóp sikeresen átment az összes indítási környezeti teszten, így letesztelve az indítás rideg és megterhelő viszonyainak hatását az űreszközre. A James Webb-et egy Ariane-5 rakétával tervezik indítani.”Az űreteleszkóp sikeres indítási környezeti tesztje egy hatalmas előrelépést képvisel a hosszú út során ami a tényleges starthoz vezet” – nyilatkozta Bill Ochs, J. Webb projektmenedzser a NASA Goddard űrközpontjából. “A környezeti tesztek demonstrálják a James Webb képességeit, ami ahhoz kell, hogy épségben átvészelje a rakétán való utat az űrbe, ami a legmegterhelőbb és legveszélyesebb része a küldetésnek. Az akusztikus és vibrációs teszteket végrehajtó nemzetközi csapat kiemelkedően jó és elhivatott szakemberekből áll, ami szerencsére az egész űrteleszkópot tervező és építő csapatra jellemző”. Az indítás hanghatásainak a tesztelésére a teleszkópot egy akusztikai kamrába vitték, ahol 140 decibeles erővel vizsgálták meg ellenálló képességét. Az akusztikus teszt eredményének kiértékelése után az űrtávcsövet egy másik terembe vitték át, ahol az vibrációs terhelését szimulálták.

A JWST felépítése
Forrás: NASA
A Northrop Grumman videója a JWST felbocsátásáról és üzembe helyezéséről

Az űrteleszkóp most egy komplett ellenőrzésen fog átesni, a fő elemeit fogják vizsgálni: a tükröket és a napellenzőt, ezután pedig a NASA, ESA és a CSA (Kanadai Űrügynökség) szakemberei egy végső tesztsorozattal engedélyeztetik az űreszköz Guyana Űrközpontba való átszállítását. Ha minden a terv szerint halad, akkor a jelenleg is érvényes dátum szerint 2021. október 21-én startol el a James Webb Űrtávcső. A nemzetközi összefogás keretében 258 cég gyártotta le az alkatrészeit, az Egyesült Államokból, Kanadából és az ESA tagországaiból.

A Hubble Űrtávcső és a JWST tükreinek méretének összehasonlítása

BepiColombo

Eközben több millió kilométerre a Földtől az ESA és JAXA Merkúr-szondája, a BepiColombo készülődik az első Vénusz melletti elhaladására, melyre október 15-én kerül sor. A 2018 októberében indított szondának összesen kilenc gravitációs hintamanőverre van szüksége ahhoz, hogy elegendően csökkenteni tudja a sebességét a 2025-ös Merkúr körüli pályára álláshoz. Az első ilyen hintamővert idén áprilisban hajtotta végre, a Földet közelítette meg és annak gravitációjával csökkent a szonda sebessége. Az október 15-i hintamanőver lesz az első a tervezett kettő közül a Vénusszal, míg további hat Merkúr-megközelítés szükséges a végső pályára álláshoz. Magyar idő szerint csütörtökön 06:58-kor lesz a legközelebb a Vénuszhoz az űreszköz, mintegy 10 270 kilométerre. Az elhaladás közben a szonda tudományos méréseket fog végezni az atmoszféra és környezeti adatok gyűtésének érdekében. Ezeket a méréseket a japán Akacuki Vénusz-szonda és a Föld körüli pályán lévő Hiszaki Spektroszkópikusz Obszervatórium méréseivel koordinálják. A második megközelítés 2021. augusztus 11-én várható – ekkor csak 1 007 kilométerre lesz a bolygótól a szonda.

A BepiColombo földközeli elhaladásáról készült felvételek
A BepiColombo felépítése
Forrás: Airbus

Gyorshírek: Sikeres Vega indítás és SLS gyorsítórakéta teszt

Vega SSMS (VV16) indítás

Az európai Arianaspace az idei hatodik indításán van túl, miután ma éjjel (a sokadik halasztás után) elindult a Vega rakéta az SSMS (Small Spacecraft Mission Service) küldetéssel.
Ez volt az Arianespace első, dedikáltan kisméretű műholdak feljuttatására történt indítása (a küldetésről az előzetesben már írtunk részletesen).
A startra a Francia Guyanan lévő Kourouból került sor magyar idő szerint éjjel 03:51-kor, és 21 különböző megrendelő 53 kisméretű műholdját szállította. A sikeres küldetés a Vega rakéta 15. sikeres missziója volt, egyben a visszatérés is a tavalyi sikertelen FalconEye-1 indítás után.

Forrás Arianespace

SLS gyorsítórakéta teszt

Tegnap este a NASA leendő SLS rakétájának a szilárd hajtóanyagú gyorsítórakétáját is tesztelték az Utah állambeli Promontoryban, a gyártó Northrop Grumman telephelyén. A rakéta hasonló az űrrepülőgépek STS rendszeréhez használthoz, azonban 4 helyett 5 szegmensből áll, és további fejlesztéseket is végrehajtottak rajta. Ez a típusú booster az Artemis III küldetés után lesz majd használatos, szóval éles használatára még éveket kell majd várni.
A teszt során egy indításnak megfelelő 2 percig működtették a rakétát és az első eredmények alapján a teszt sikeres volt. Az SLS rakétán két ilyen szilárd hajtóanyagú segédrakétát fognak majd alkalmazni, mely a szükséges tolóerő 75%-át adja majd a repülés első két percében. Az SLS főhajtóművei 4 db RS-25 motor lesz majd, melyek szintén az űrrepülőgép-programból származnak – azonban sem ezek, sem a most tesztelt gyorsítórakéták nem lesznek újrahasználhatóak. További cikkeinket az SLS programról a címke alatt találjátok.

Arianespace 🇪🇺 | SSMS PoC küldetés profil

Csütörtök hajnalban fog elindulni az Arianespace Vega hordozórakétája a Small Spacecraft Mission Service – Proof of Concept misszión Francia Guyanából. Ez egy tesztküldetése lesz az új műholdtároló-modulnak, illetve az ezelőtti Electron indításhoz hasonlóan ez is egy “return to flight” misszió lesz, ugyanis nem repült Vega rakéta tavaly nyár óta a VV15 küldetés kudarca miatt.

Indítás ideje, helye: 2020. szeptember 3. magyar idő szerint 01:51, Guyana Űrközpont – ELV (Ensemble de Lancement Vega – Vega indítóállás), Kourou, Francia Guyana 🇫🇷
Megbízó, rakomány: SSMS szénszálas kompozit műholdtároló egység – ezen pedig 7 kisműhold és 46 CubeSat a 0,25U-tól egészen a 6U méretekig (1U=10x10x10cm, kb. 1 kilogramm)
Rakomány össztömege: 830 kg
Hordozórakéta: Arianespace Vega hordozórakétája
Pálya: alacsony napszinkron pálya (SSO) 700 km, 97.90° 
Élő közvetítés: hivatalos élő közvetítés az Arianespace YouTube csatornáján (amint elérhető a link, frissítjük a cikket)
Indítás kimenetele: sikeres indítás (összefoglaló)

Vega rakéta korábbi indítása
Forrás: Arianespace

Vega
A Vega (Vettore Europeo di Generazione Avanzata, magyarul: újgenerációs európai hordozórakéta) az Arianespace legújabb hordozórakétája, melyet az Olasz (ASI) és az Európai Űrügynökség (ESA) segítségével fejlesztettek ki. 1998-ban kezdődött a tervezés, 2012-ben repült először – ennek a fedélzetén volt az első magyar műhold is, a Masat-1.
Alacsony poláris és napszinkron pályákra 1430 kg hasznos terhet tud állítani, elliptikus (200x1500km) 1960 kilogrammot. Az Ariane-1 által használt ELA-1 indítóállás lett átalakítva a Vega számára, a mai megnevezése ELV – Ensemble de Lancement Vega.

Vega és az ELV startállás
Forrás: ESA

A rakéta négyfokozatú – az első fokozat egy szilárd hajtóanyagú P80 motor 2261 kN (!) tolóerővel. A második fokozat szintén egy szilárd hajtóanyagú rakétamotor, mely a Zefiro 23 nevet viseli, 871 kN tolóerőt biztosítva. A harmadik fokozat is egy szilárd hajtóanyagú motor, a Zefiro 9, ami 260 kN tolóerőt nyújt. A negyedik fokozat a precíz pályára állítás érdekében folyékony hajtóanyagot használó AVUM fokozat – egy ukrán RD-843 hipergolikus hajtóművel rendelkezik 2 kN tolóerőt biztosítva. A hajtóanyagkeverék UDMH/N2O4 – asszimetrikus-dimetilhidrazin és dinitrogén-tetraoxid. A fokozatok égési ideje: 1. fokozat – 110 másodperc, 2. fokozat – 77 másodperc, 3. fokozat – 120 másodperc, 4. fokozat – 667 másodperc.
A legutóbbi misszión amikor a FalconEye-1-et kellett volna pályára állítania, a hibát a Zefiro 23 okozta, ugyanis nem indult be és így visszazuhant a rakéta.

A rakéta egyes komponensei, és az őket gyártó vállalatok
Forrás: ESA

Small Spacecraft Mission Service és a rakomány
Ez lesz a tesztrepülése a Vega-SSMS konfigurációnak. Az SSMS egy szénszálas kompozit anyagokból készült kisműholdak tárolására majd kibocsátására tervezett modul a Vega rakéta orrkúpjában. A programot 2016-ban kezdték el az Európai Bizottság támogatásával. Célja, hogy az egyre növekvő kis- és nanoműhold piac igényeit kielégítség ezzel a rideshare (több kisműhold egyszerre osztozik egy rakétán) opcióval. A rakomány:

Műhold(ak) MéretTulajdonosGyártóAlkalmazás
ATHENAkisműholdFacebookMaxar Technologiestávközlés
GHGSat-C1kisműholdGHGSatSFLtávérzékelés
NEMO-HDkisműholdSpace-SISFL&Space-SItávérzékelés
UPMSat-2kisműholdIRD-UPMIRD-UPMtechnológiai demonstráció
ESAILkisműholdExactEarthLuxSpacetávérzékelés
ION Cubesat CarrierkisműholdPlanet LabsD-Orbitműhold-tárolóegység
NewSat-6kisműholdSatellogicSatellogictávérzékelés
SpaceBEE 10-2112 db 0,25USwarm TechnologySwarm Technologytávközlés
Flock-4v 1-1414 db 3UPlanet LabsPlanet Labstávérzékelés
LEMUR-2 112-1198 db 3USpire GLOBALSpire GLOBALtávközlés
Cat-5 A&B2 db 6UUPC&ESADeimos&Tyvaktávérzékelés
DIDO-33USpacePharmaSpacePharmatudományos
PICASSO-BE3UESABIRA-IASBtávérzékelés
SIMBA3UESAKMI-IRMtávérzékelés
TRISAT3UMaribori EgyetemSkyLabstávérzékelés
TTÜ-1002UTalTechTalTechtávérzékelés
AMICalSat1UCSUG&MSUCSUG&SatRevolutiontávérzékelés
NAPA-16UThai Királyi LégierőISISpacetávérzékelés
TARS-16UKepler Comms.ÅAC Clyde Spacetávközlés
Tyvak-01716UismeretlenTyvakismeretlen
OSM-1 Cicero6UOrbital SolutionsTyvaktávérzékelés
SSMS és az AVUM adapter
Forrás: Arianespace

Az Ariane-6 hordozórakéta

Ezzel a cikkel indul el a következő sorozatunk, melynek célja a világ űrhajózási indítójárműveinek a részletes bemutatása. Az Ariane cikksorozatunkban megígértük, hogy az Ariane-6-ot is megemlítjük, így ezzel a rakétával szeretném elindítani a sorozatunkat. Először pár fontosabb adatot összeírunk a rakétáról, melyekkel sejtést kaphatunk a méretekről és a felhasználási célokról.

Funkció:Közepes teherbírású hordozórakéta
Származási ország, gyártó:ESA/Franciaország – Arianespace 🇫🇷/🇪🇺
Indítási költség:75 millió € vagy 95 millió € (A62/A64)
Sikerességi arány (sikeres/összes indítás):0/0 (fejlesztés alatt)
Elsődleges indítási helyszín:Guyana Űrközpont, ELA-4 🇫🇷
Ariane-6 illusztrációja (64-es konfiguráció)

Méretek

Magasság:63 méter
Átmérő:5,4 méter
Indítási tömeg:530-860 tonna
Fokozatok száma:2 + gyorsítórakéták

Segédrakéták és áramvonalazó orrkúp (fairing) átmérő

Segédrakéták száma:2 vagy 4
Átmérő:3 méter
Hajtóanyag tömege:143 tonna/segédrakéta
Hajtómű:P120
Tolóerő:4 500 kN
Újrfelhasználhatóak?Nem
Áramv. orrkúp átmérő:5,4 méter
Áramv. orrkúp hossz:20 méter
Újrafelhasználható?Igen

Első és második fokozat

1. fokozat átmérő:5,4 méter
Hajtóanyag tömege:140 tonna
Hajtómű:Vulcain 2.1
Tolóerő:1 370 kN
Hajtóanyag:Kriogenikus LH2/LOX
(hidrogén/folyékony oxigén)
Újrafelhasználható?Nem
2. fokozat átmérő:5,4 méter
Hajtóanyag tömege:31 tonna
Hajtómű:Vinci
Tolóerő:180 kN
Hajtóanyag:Kriogenikus LH2/LOX
(hidrogén/folyékony oxigén)
Újrafelhasználható?Nem

Hasznos teher kapacitás

Hasznos teher alacsony Föld
körüli pályára (LEO):
Ariane 62: 10 350 kg
Ariane 64: 21 650 kg
Hasznos teher alacsony
napszinkron pályára (SSO):
Ariane 62: 6 450 kg
Ariane 64: 14 900 kg
Hasznos teher geostacionárius
átviteli pályára (GTO):
Ariane 62: 5 000 kg
Ariane 64: 11 500 kg

Az Ariane-6 története

Az Ariane-6-ot a 2010-es évek elején vetették fel mint az Ariane-5-öt helyettesítő hordozórakétát. 2012 és 2015 között számos koncepciót és tervet kidolgoztak a jövőbeli hordozórakétáról. 2016-ban több ESA tagország is pénzügyileg beszállt a programba, illetve több szerződést is megkötöttek az első tesztpéldányok megtervezésére és megépítésére.
Az Európai Űrügynökség (ESA) a szükséges tanulmányok elkészítése után 2012-ben kiválasztotta az Ariane-6 PPH dizájnt. Ebben az első fokozatot három darab P145 szilárd hajtóanyagú rakéta alkotta volna. A második fokozat egy darab P145 szilárd fokozatból állt volna, tetején a H32 kriogenikus felső fokozattal. Ez a verzió 6500 kilogrammot tudott volna geostacionárius átviteli pályára (GTO) állítani 95 millió dolláros áron. 2014-ben az Ariane-6 PPH program tervezett költségét 4 milliárd euróra becsülték, de később 3 milliárd euróra sikerült ezt csökkenteni a beszállítók körének a leszűkítésével.

Ariane-6 PPH verzió

2014-ben az Airbus és Safran meglepte az Európai Űrügynökséget egy közös vállalkozás bejelentésével az Ariane 6.1 és 6.2 javaslat keretében. A közös vállalkozással nem csak az Ariane-6 tervezése és építése járt volna, hanem a Francia Űrügynökség (CNES) osztalékát is kivásárolták volna az Arianespace-ből. Az ő tervezetük szerint az Ariane 6.1 egy kriogenikus első fokozattal rendelkezett volna, mely egy darab Vulcain-2 hajtóművel lenne felszerelve. Az első fokozatot még P145 gyorsítórakéták segítették volna, amik az Ariane-5 segédrakétáihoz képest váltak volna le a fő fokozatról. A második fokozat egy kriogenikus fokozat lett volna, melyet az újonnan fejlesztett Vinci hajtómű gyorsított volna. A 6.2-es változat annyiban tért volna el a 6.1-es változattól, hogy ezt az EPS hipergolikus fokozatot használta volna második fokozatként az Aestus hajtóművel (az EPS fokozatról ebben a cikkben írtunk bővebben). Az Ariane 6.1 változatot kereskedelmi, míg a 6.2-es változatot főleg katonai célokra használták volna.

Ariane 6.1 és 6.2 verziók

2014 szeptemberében a Francia Nemzeti Űrhivatal (CNES) az Ariane 6 PPH dizájnt ért kritikák miatt egy új tervezetet nyújtott be – az Ariane 62 és 64-et. Ez a verzió egy krigenikus első fokozatot (Lower Liquid Propulsion Module) használ, amely a Vulcain 2.1 hidrolox (hidrogént és oxigént használ) hajtóművel van ellátva (Vulcain 2 fejlesztett változata). A második fokozat (Upper Liquid Propulsion Module) egy darab, szintén kriogenikus üzemanyaggal meghajtott Vinci hajtóművet használ. Ebben a tervben a P120-as szilárd hajtóanyagú gyorsítórakétákat használnák segédrakétákként. Ezeknek a rakétáknak változtatható a száma, két P120-as esetén 75 millió € egy indítás, négy esetén 90 millió €, a fenti táblázatban lehet látni, hogy milyen tömegű űreszközt tudnak pályára állítani egyes pályatípusokra.
Az Ariane-62/64 a PPH tervezettel ellentétben egy rugalmas indítójárművet biztosít az európai piacnak. Az Ariane-62-t nehezebb (főleg katonai) műholdak indításánal fogják használni, míg a 64-est a kereskedelmi dupla indításoknál. 2014 végén az olasz, francia és német miniszterek egy gyűlésen közös űrstratégiai megállapodásokat kötöttek, az Ariane-5 örökösét illetően is. 2014 decemberében az Európai Űrügynökség bejelentette, hogy az Ariane-62/64 javaslatot választották ki az Ariane-5-öt felváltó jövőbeli indítójárműnek. A fejlesztés teljes költsége 3,6 milliárd €, melynek 89%-át az ESA, a maradék 11%-ot pedig az Arianegroup és egyéb partnerek finanszíroznak.

2014-es luxemburgi gyűlés ahol az Ariane-6-ról döntöttek

2010-ben a CNES a Roszkozmosszal egy újrafelhasználható Ariane-6 variáns lehetőségéről tárgyalt. Egy metánt használó, hajtóművel leszálló első fokozatot terveztek, de később elvetették az ötletet, mert pénzügyileg jobb opció, ha évente tíz darab rakétát legyártanak a tervek szerint. Másik ok a hajtóművek gyártása volt, ugyanis egy stabil hajtóműgyártó láncot építettek ki az elmúlt évtizedekben, és az újrafelhasználással ennek a kihasználtsága jelentősen lecsökkenne a CNES nyilatkozata szerint. 2015-ben az Airbus bejelentette az Adeline visszatérő fokozat fejlesztését, mellyel a hajtóműveket és a legértékesebb részeit a rakétának megpróbálnák visszaszállítani az indítóközpontba egy szárnyakkal és hajtóművekkel rendelkező repülő segítségével. Az Adeline első repülésését 2025 és 2030 között láthatjuk majd.
2016-ban az Airbus Safran Launchers bejelentette, hogy az Adelinen való munka folytatódik, és, hogy egy új methalox (metánt és oxigént égető) hajtómű fejlesztése is elkezdődött. Ez az új hajtómű Prometheus névre hallgat és az Ariane-6 első fokozati hajtóműveként tervezik egy nap alkalmazni, újrafelhasználással (vagy az Adeline-el vagy egy hajtóműves visszatéréssel).
Másik célja ennek a hajtóműnek, hogy az Ariane-6 árát felére csökkentsék, ugyanis a tervezett gyártási költsége csak 1 millió € lenne, és akár ötször is repülhetne.

Az Adeline visszatérés közben. Középen lehet látni a főhajtóművet.
Forrás: Airbus

Előkészületek, jelenlegi állapot

Az Ariane-6 már a végső tesztelési stádiumban van, ahol a teszteredmények fogják meghatározni a gyártási mechanizmusokat. A Német Űrügynökség (DLR) lampoldshauseni telepén sikeres teszteket hajtottak végre a Vulcain 2.1 és Vinci hajtóművekkel, a repülésre való engedélyezés hamarosan megtörténhet. Ugyanezen a teszttelepen zajlanak a második fokozat tesztjei, és a Vinci második fokozatra való integrációja és végső tesztelése. A második fokozat az Arianegroup brémai üzeméből érkezik.

A franciaországi Les Mureaux-ban (ahol a többi Ariane komponenst is gyártják) találhatóak a legnagyobb kavarásos dörzshegesztőgépek Európában, melyekkel az Ariane-6 kriogenikus első fokozati üzemanyagtartályait fogják készíteni. Az első fokozatot és a Vulcain 2.1 hajtóművet összekötő szegmenst is ugyanitt gyártják és szerelik fel a rakétára. Az első P120C (a C-variáns a Vega-C rakéta számára készül, de a motor identikus) gyorsítórakéta statikus tesztgyújtása tavaly januárban sikeresen lezajlott a Guyana Űrközpontban. Egy második sikeres tesztgyújtás után ez is megkapta a repülési engedélyt.

Vulcain 2.1 hajtóműtesztje

A szénkompozit segédrakétákat az Avio olaszországi Colleferroban található üzemében gyártják és töltik meg szilárd hajtóanyaggal. A szénszálas áramvonalazó orrkúpot (payload fairing), ami a rakományt védi az atmoszferikus repülés közben a RUAG Space gyártja Svájcban. Ugyanez a cég gyártja a Vega, Ariane 5 illetve a ULA Atlas és Vulcan rakétákra az orrkúpot. Az első repülésre az orrkúp egyik fele már kész van, a másik gyártása még zajlik.

Az ELA-4 építkezés
Forrás: Arianespace

Az összes felkészülési folyamatot sajnos érintette a koronavírus-járvány, de leginkább az ELA-4 indítóállás építkezését. 2020 végére tervezték az első indítást, de ez sajnos két okból sem valósulhat meg. Az egyik az előbb említett késés, a második a OneWeb műholdak biztonytalansága. Az első misszión 36 OneWeb műholdat állított volna pályára, de sajnos a cég csődbe ment (és az esetleges finanszírozás is biztonytalan még) így valószínűleg új rakományt kell keresni az első startra, ami előreláthatólag 2021-ben lesz.

OneWeb műholdak pályára állítása
Forrás: OneWeb

Ezzel kitárgyaltuk az Ariane-rakétacsaládot. Ha még nem olvastad el a küldön Ariane sorozatunk első vagy második részét, azt az alábbi linkeken megteheted. A következő cikkünkben egy kis hordozóról fogunk írni, amely turbószivattyú-rendszere teljesen egyedi az űriparban…

Az Ariane-1/2/3 rakéták történelme
Az Ariane-4/5 történelme

Arianespace 🇪🇺 | Galaxy 30, MEV-2 & BSAT-4B indítás küldetés profil

Vasárnap hajnalban indul az Arianespace Ariane-5 hordozórakétája Francia Guyanából három darab műholddal a fedélzetén. Ez lesz az első indítás a koronavírus járvány kitörése óta a dél-amerikai űrkikötőből. Lássuk is a részleteket:

Indítás ideje, helye: 2020. augusztus 16. magyar idő szerint 00:04, Guyana Űrközpont – Ariane Launch Area 3, Francia Guyana 🇪🇺/🇫🇷
Megbízó, rakomány: Galaxy-30 távközlési szatelit az Intelsat számára, MEV-2 élettartam meghosszabító eszköz szintén az Intelsat számára, BSAT-4B távközlési műhold a japán BSAT vállalatnak.
Hordozórakéta: az Arianespace Ariane-5 ECA hordozórakétája
Pálya: Geostacionárius átviteli pálya (GTO)
Élő közvetítés: Arianespace hivatalos közvetítése
Indítás kimenetele: sikeres indítás (beszámolónk itt olvasható)

Forrás: Geoff Barrett

Galaxy 30

2018. januárjában bízta meg az Intelsat az Orbital ATK-t (ma Northrop Grumman) a Galaxy 30 geostacionárius műhold megépítésével. Az űreszközt a Northrop Grumman Dulles-i üzemében szerelték össze, a GeoStar-2 műholdplatform alapján. Ez a platform 15 év hosszúságú geostacionárius missziókra van tervezve. A geostacionárius pályára állást a platformba beépített “apogee kick motor”, azaz egy szilárd gyorsítófokozat biztosítja. Tömege 3,3 tonna. 5 kW elektromos áramot termelnek a napelemtáblái, főhajtóműve hidrazint használ a pályakorrekciókhoz. A platform még egy lítium-ion akkumulátorteleppel is fel van szerelve.
A Galaxy 30 egy C-sávú transzponderrel van ellátva klasszikus közvetítési célokra, például UHD sugárzásra. Ku- és Ka-sávú transzponderek is találhatóak a műholdon.
A Galaxy 30 főleg az észak-amerikai televíziós piacot fogja kiszolgálni, nyugati 125°-re lesz pozicionálva.

Mission Extension Vehicle – 2 (MEV-2)

Az Ariane rakterében a Galaxy-30 mellett elhelyezett MEV-2 lesz a világon a második geostacionárius műhold élettartam-hosszabbító küldetés. Az elképzelés abból állt, hogy az alacsony üzemanyagszinttel rendelkező műholdakhoz egy másik szatelitet dokkolnának és az átvenné a pályakorrekciós és irányítási feladatait. A koncepció sikeres volt, ugyanis tavaly egy Proton-M rakéta elindította a MEV-1-et, ami később sikeresen dokkolt az Intelsat 901-el. A MEV-1 még öt évig marad a 901-hez kapcsolódva mielőtt temetőpályára állítaná azt, és egy másik műholdra csatlakozna.
A MEV-2 az első teljesen kereskedelmi misszió. Az Intelsat 1002 élettartam-hosszabítását fogják elvégezni a MEV-2-vel. A Mission Extension Vehicle a GeoStar-3 platformra épül. Itt a hatékonyság és élettartam szempontjából ionhajtóművekkel van felszerelve a műhold. Fejlesztették az akkumulátortelepet a GeoStar-2-höz képest, illetve már 8kW elektromos áramot termelnek a napelemtáblák. Szintén 15 év az élettartam, tehát akár három műhold működését és meghosszabíthatja 5 évvel.

Nagyon jól ábrázolja ez a videó a szervízküldetés menetét
Northrop Grumman

BSAT-4B

A BSAT-4B egy japán geostacionárius műhold a Broadcasting Satellite System Corporation számára. Az eszközt a Space Systems/Loral (Maxar Technologies alvállalata) építette.
A 2017-ben indított BSAT-4A tartalékjaként fog szolgálni.
Az SSL-1300 műholdplatformra épült. 5-12 kW között ingadozik az elektromos áramtermelése a napelemtábláknak. Akár 70 darab transzponderrel is fel lehet szerelni. A világ egyik legmegbízhatóbb műholdplatformja, több mint 80 geostacionárius műhold épült már erre a platformra.
A BSAT-4B tömege 3,5 tonna. 24 Ku-sávú transzponderrel van felszerelve. 15 évre tervezik az élletartamát. Keleti 110°-re lesz helyezve. A BSAT-4A-hoz hasonlóan teljes Direct-To-Home 4K/8K UHD lefedettsége lesz Japánban, különlegessége hogy a 2021-es tokiói olimpia élő közvetítésében is szerepet fog vállalni.